Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hepatol ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20244104

RESUMEN

BACKGROUND AND AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n=6) and from patients with an initial diagnosis of AIH (n=9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune like hepatitis (DI-AILH). In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor (BCR) sequencing showed that T- and B-cell clones were more dominant in VILI than in AIH. In addition, many T-cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6 and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 vaccination-induced liver injury is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. VILI may be a separate entity, which is distinct from AIH and more closely related to DI-AILH. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury. Our analysis shows that COVID-19 vaccine-induced liver injury shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that vaccine-induced liver injury is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 vaccine-induced liver injury will recover completely and do not develop long-term autoimmune hepatitis.

2.
Res Pract Thromb Haemost ; 7(4): 100182, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2326826

RESUMEN

Background: COVID-19 is accompanied by a hypercoagulable state and characterized by microvascular and macrovascular thrombotic complications. In plasma samples from patients with COVID-19, von Willebrand factor (VWF) levels are highly elevated and predictive of adverse outcomes, especially mortality. Yet, VWF is usually not included in routine coagulation analyses, and histologic evidence of its involvement in thrombus formation is lacking. Objectives: To determine whether VWF, an acute-phase protein, is a bystander, ie, a biomarker of endothelial dysfunction, or a causal factor in the pathogenesis of COVID-19. Methods: We compared autopsy samples from 28 patients with lethal COVID-19 to those from matched controls and systematically assessed for VWF and platelets by immunohistochemistry. The control group comprised 24 lungs, 23 lymph nodes, and 9 hearts and did not differ significantly from the COVID-19 group in age, sex, body mass index (BMI), blood group, or anticoagulant use. Results: In lungs, assessed for platelets by immunohistochemistry for CD42b, microthrombi were more frequent in patients with COVID-19 (10/28 [36%] vs 2/24 [8%]; P = .02). A completely normal pattern of VWF was rare in both groups. Accentuated endothelial staining was found in controls, while VWF-rich thrombi were only found in patients with COVID-19 (11/28 [39%] vs 0/24 [0%], respectively; P < .01), as were NETosis thrombi enriched with VWF (7/28 [25%] vs 0/24 [0%], respectively; P < .01). Forty-six percent of the patients with COVID-19 had VWF-rich thrombi, NETosis thrombi, or both. Trends were also seen in pulmonary draining lymph nodes (7/20 [35%] vs 4/24 [17%]; P = .147), where the overall presence of VWF was very high. Conclusion: We provide in situ evidence of VWF-rich thrombi, likely attributable to COVID-19, and suggest that VWF may be a therapeutic target in severe COVID-19.

3.
Cardiovasc Res ; 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: covidwho-2256625

RESUMEN

AIMS: SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. TRANSLATIONAL PERSPECTIVE: While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature's undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF - yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.

4.
Pathologe ; 42(Suppl 1): 89-97, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1971686

RESUMEN

BACKGROUND: A dysregulated immune response is considered one of the major factors leading to severe COVID-19. Previously described mechanisms include the development of a cytokine storm, missing immunoglobulin class switch, antibody-mediated enhancement, and aberrant antigen presentation. OBJECTIVES: To understand the heterogeneity of immune response in COVID-19, a thorough investigation of histomorphological patterns in regional lymph nodes was performed. MATERIALS AND METHODS: Lymph nodes from the cervical, mediastinal, and hilar regions were extracted from autopsies of patients with lethal COVID-19 (n = 20). Histomorphological characteristics, SARS-CoV­2 qRT-PCR, and gene expression profiling on common genes involved in immunologic response were analyzed. RESULTS: Lymph nodes displayed moderate to severe capillary stasis and edema, an increased presence of extrafollicular plasmablasts, mild to moderate plasmacytosis, a dominant population of CD8+ T­cells, and CD11c/CD68+ histiocytosis with hemophagocytic activity. Out of 20 cases, 18 presented with hypoplastic or missing germinal centers with a decrease of follicular dendritic cells and follicular T­helper cells. A positive viral load was detected by qRT-PCR in 14 of 20 cases, yet immunohistochemistry for SARS-CoV-2 N-antigen revealed positivity in sinus histiocytes of only one case. Gene expression analysis revealed an increased expression of STAT1, CD163, granzyme B, CD8A, MZB1, and PAK1, as well as CXCL9. CONCLUSIONS: Taken together, our findings imply a dysregulated immune response in lethal COVID-19. The absence/hypoplasia of germinal centers and increased presence of plasmablasts implies a transient B­cell response, implying an impaired development of long-term immunity against SARS-CoV­2 in such occasions.


Asunto(s)
COVID-19 , Linfocitos T CD8-positivos , Humanos , Pulmón , Ganglios Linfáticos , SARS-CoV-2
5.
Front Immunol ; 12: 763098, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581339

RESUMEN

Although initial immunophenotypical studies on peripheral blood and bronchoalveolar lavage samples have provided a glimpse into the immunopathology of COVID-19, analyses of pulmonary draining lymph nodes are currently scarce. 22 lethal COVID-19 cases and 28 controls were enrolled in this study. Pulmonary draining lymph nodes (mediastinal, tracheal, peribronchial) were collected at autopsy. Control lymph nodes were selected from a range of histomorphological sequelae [unremarkable histology, infectious mononucleosis, follicular hyperplasia, non-SARS related HLH, extrafollicular plasmablast activation, non-SARS related diffuse alveolar damage (DAD), pneumonia]. Samples were mounted on a tissue microarray and underwent immunohistochemical staining for a selection of immunological markers and in-situ hybridization for Epstein Barr Virus (EBV) and SARS-CoV-2. Gene expression profiling was performed using the HTG EdgeSeq Immune Response Panel. Characteristic patterns of a dysregulated immune response were detected in COVID-19: 1. An accumulation of extrafollicular plasmablasts with a relative paucity or depletion of germinal centers. 2. Evidence of T-cell dysregulation demonstrated by immunohistochemical paucity of FOXP3+, Tbet+ and LEF1+ positive T-cells and a downregulation of key genes responsible for T-cell crosstalk, maturation and migration as well as a reactivation of herpes viruses in 6 COVID-19 lymph nodes (EBV, HSV). 3. Macrophage activation by a M2-polarized, CD163+ phenotype and increased incidence of hemophagocytic activity. 4. Microvascular dysfunction, evidenced by an upregulation of hemostatic (CD36, PROCR, VWF) and proangiogenic (FLT1, TEK) genes and an increase of fibrin microthrombi and CD105+ microvessels. Taken together, these findings imply widespread dysregulation of both innate and adoptive pathways with concordant microvascular dysfunction in severe COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Pulmón , Activación de Macrófagos/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Tromboinflamación/inmunología , Tromboinflamación/patología , Tromboinflamación/virología
6.
Cell Rep Med ; 2(10): 100421, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1440413

RESUMEN

Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-ß1 levels between smokers and non-smokers.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/transmisión , Mucosa Respiratoria/metabolismo , Serina Endopeptidasas/genética , Fumadores , Tropismo Viral , Anciano , Anciano de 80 o más Años , COVID-19/genética , COVID-19/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Cavidad Nasal/metabolismo , SARS-CoV-2/fisiología , Tráquea/metabolismo
7.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1343160

RESUMEN

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Asunto(s)
COVID-19/virología , Diabetes Mellitus/virología , Células Secretoras de Insulina/virología , Neuropilina-1/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Células A549 , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos CD/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/complicaciones , COVID-19/diagnóstico , Estudios de Casos y Controles , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Persona de Mediana Edad , Receptores de Transferrina/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
J Pathol Clin Res ; 7(4): 326-337, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1173791

RESUMEN

While coronavirus disease 2019 (COVID-19) primarily affects the respiratory tract, pathophysiological changes of the cardiovascular system remain to be elucidated. We performed a retrospective cardiopathological analysis of the heart and vasculature from 23 autopsies of COVID-19 patients, comparing the findings with control tissue. Myocardium from autopsies of COVID-19 patients was categorised into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive (n = 14) or negative (n = 9) based on the presence of viral RNA as determined by reverse transcriptase polymerase chain reaction (RT-PCR). Control tissue was selected from autopsies without COVID-19 (n = 10) with similar clinical sequelae. Histological characteristics were scored by ordinal and/or categorical grading. Five RT-PCR-positive cases underwent in situ hybridisation (ISH) for SARS-CoV-2. Patients with lethal COVID-19 infection were mostly male (78%) and had a high incidence of hypertension (91%), coronary artery disease (61%), and diabetes mellitus (48%). Patients with positive myocardial RT-PCR died earlier after hospital admission (5 versus 12 days, p < 0.001) than patients with negative RT-PCR. An increased severity of fibrin deposition, capillary dilatation, and microhaemorrhage was observed in RT-PCR-positive myocardium than in negatives and controls, with a positive correlation amongst these factors All cases with increased cardioinflammatory infiltrate, without myocyte necrosis (n = 4) or with myocarditis (n = 1), were RT-PCR negative. ISH revealed positivity of viral RNA in interstitial cells. Myocardial capillary dilatation, fibrin deposition, and microhaemorrhage may be the histomorphological correlate of COVID-19-associated coagulopathy. Increased cardioinflammation including one case of myocarditis was only detected in RT-PCR-negative hearts with significantly longer hospitalisation time. This may imply a secondary immunological response warranting further characterisation.


Asunto(s)
COVID-19/patología , COVID-19/virología , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Adulto , Autopsia/métodos , COVID-19/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/etiología , Miocarditis/patología , Miocardio/patología , ARN Viral/genética
9.
Pathologe ; 42(2): 188-196, 2021 Mar.
Artículo en Alemán | MEDLINE | ID: covidwho-1081955

RESUMEN

BACKGROUND: A dysregulated immune response is considered one of the major factors leading to severe COVID-19. Previously described mechanisms include the development of a cytokine storm, missing immunoglobulin class switch, antibody-mediated enhancement, and aberrant antigen presentation. OBJECTIVES: To understand the heterogeneity of immune response in COVID-19, a thorough investigation of histomorphological patterns in regional lymph nodes was performed. MATERIALS AND METHODS: Lymph nodes from the cervical, mediastinal, and hilar regions were extracted from autopsies of patients with lethal COVID-19 (n = 20). Histomorphological characteristics, SARS-CoV­2 qRT-PCR, and gene expression profiling on common genes involved in immunologic response were analyzed. RESULTS: Lymph nodes displayed moderate to severe capillary stasis and edema, an increased presence of extrafollicular plasmablasts, mild to moderate plasmacytosis, a dominant population of CD8+ T­cells, and CD11c/CD68+ histiocytosis with hemophagocytic activity. Out of 20 cases, 18 presented with hypoplastic or missing germinal centers with a decrease of follicular dendritic cells and follicular T­helper cells. A positive viral load was detected by qRT-PCR in 14 of 20 cases, yet immunohistochemistry for SARS-CoV-2 N-antigen revealed positivity in sinus histiocytes of only one case. Gene expression analysis revealed an increased expression of STAT1, CD163, granzyme B, CD8A, MZB1, and PAK1, as well as CXCL9. CONCLUSIONS: Taken together, our findings imply a dysregulated immune response in lethal COVID-19. The absence/hypoplasia of germinal centers and increased presence of plasmablasts implies a transient B­cell response, implying an impaired development of long-term immunity against SARS-CoV­2 in such occasions.


Asunto(s)
COVID-19 , Linfocitos T CD8-positivos , Humanos , Pulmón , Ganglios Linfáticos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA